3.293 \(\int \frac{(a \cos (e+f x))^m}{(b \csc (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=78 \[ -\frac{(a \cos (e+f x))^{m+1} \, _2F_1\left (-\frac{1}{4},\frac{m+1}{2};\frac{m+3}{2};\cos ^2(e+f x)\right )}{a b f (m+1) \sqrt [4]{\sin ^2(e+f x)} \sqrt{b \csc (e+f x)}} \]

[Out]

-(((a*Cos[e + f*x])^(1 + m)*Hypergeometric2F1[-1/4, (1 + m)/2, (3 + m)/2, Cos[e + f*x]^2])/(a*b*f*(1 + m)*Sqrt
[b*Csc[e + f*x]]*(Sin[e + f*x]^2)^(1/4)))

________________________________________________________________________________________

Rubi [A]  time = 0.11167, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {2586, 2576} \[ -\frac{(a \cos (e+f x))^{m+1} \, _2F_1\left (-\frac{1}{4},\frac{m+1}{2};\frac{m+3}{2};\cos ^2(e+f x)\right )}{a b f (m+1) \sqrt [4]{\sin ^2(e+f x)} \sqrt{b \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*Cos[e + f*x])^m/(b*Csc[e + f*x])^(3/2),x]

[Out]

-(((a*Cos[e + f*x])^(1 + m)*Hypergeometric2F1[-1/4, (1 + m)/2, (3 + m)/2, Cos[e + f*x]^2])/(a*b*f*(1 + m)*Sqrt
[b*Csc[e + f*x]]*(Sin[e + f*x]^2)^(1/4)))

Rule 2586

Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(1*(b*Cos[e +
 f*x])^(n + 1)*(b*Sec[e + f*x])^(n + 1))/b^2, Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && LtQ[n, 1]

Rule 2576

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^(2*IntPar
t[(n - 1)/2] + 1)*(b*Sin[e + f*x])^(2*FracPart[(n - 1)/2])*(a*Cos[e + f*x])^(m + 1)*Hypergeometric2F1[(1 + m)/
2, (1 - n)/2, (3 + m)/2, Cos[e + f*x]^2])/(a*f*(m + 1)*(Sin[e + f*x]^2)^FracPart[(n - 1)/2]), x] /; FreeQ[{a,
b, e, f, m, n}, x] && SimplerQ[n, m]

Rubi steps

\begin{align*} \int \frac{(a \cos (e+f x))^m}{(b \csc (e+f x))^{3/2}} \, dx &=\frac{\int (a \cos (e+f x))^m (b \sin (e+f x))^{3/2} \, dx}{b^2 \sqrt{b \csc (e+f x)} \sqrt{b \sin (e+f x)}}\\ &=-\frac{(a \cos (e+f x))^{1+m} \, _2F_1\left (-\frac{1}{4},\frac{1+m}{2};\frac{3+m}{2};\cos ^2(e+f x)\right )}{a b f (1+m) \sqrt{b \csc (e+f x)} \sqrt [4]{\sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 6.76986, size = 116, normalized size = 1.49 \[ \frac{2 a \cos (2 (e+f x)) \left (-\cot ^2(e+f x)\right )^{\frac{1-m}{2}} (a \cos (e+f x))^{m-1} \, _2F_1\left (\frac{1}{4} (-2 m-3),\frac{1-m}{2};\frac{1}{4} (1-2 m);\csc ^2(e+f x)\right )}{b f (2 m+3) \left (\csc ^2(e+f x)-2\right ) \sqrt{b \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Cos[e + f*x])^m/(b*Csc[e + f*x])^(3/2),x]

[Out]

(2*a*(a*Cos[e + f*x])^(-1 + m)*Cos[2*(e + f*x)]*(-Cot[e + f*x]^2)^((1 - m)/2)*Hypergeometric2F1[(-3 - 2*m)/4,
(1 - m)/2, (1 - 2*m)/4, Csc[e + f*x]^2])/(b*f*(3 + 2*m)*Sqrt[b*Csc[e + f*x]]*(-2 + Csc[e + f*x]^2))

________________________________________________________________________________________

Maple [F]  time = 0.309, size = 0, normalized size = 0. \begin{align*} \int{ \left ( a\cos \left ( fx+e \right ) \right ) ^{m} \left ( b\csc \left ( fx+e \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*cos(f*x+e))^m/(b*csc(f*x+e))^(3/2),x)

[Out]

int((a*cos(f*x+e))^m/(b*csc(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \cos \left (f x + e\right )\right )^{m}}{\left (b \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(f*x+e))^m/(b*csc(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*cos(f*x + e))^m/(b*csc(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \csc \left (f x + e\right )} \left (a \cos \left (f x + e\right )\right )^{m}}{b^{2} \csc \left (f x + e\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(f*x+e))^m/(b*csc(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*csc(f*x + e))*(a*cos(f*x + e))^m/(b^2*csc(f*x + e)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(f*x+e))**m/(b*csc(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \cos \left (f x + e\right )\right )^{m}}{\left (b \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(f*x+e))^m/(b*csc(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(f*x + e))^m/(b*csc(f*x + e))^(3/2), x)